direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊4Q8, C33⋊7Q8, C32⋊8Dic6, C12.7(C3×S3), C6.24(S3×C6), (C3×C12).9C6, C3⋊2(C3×Dic6), (C3×C6).57D6, C12.9(C3⋊S3), C32⋊6(C3×Q8), (C3×C12).14S3, C3⋊Dic3.4C6, (C32×C12).3C2, (C32×C6).21C22, C4.(C3×C3⋊S3), C2.3(C6×C3⋊S3), C6.22(C2×C3⋊S3), (C3×C6).29(C2×C6), (C3×C3⋊Dic3).6C2, SmallGroup(216,140)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C32⋊4Q8
G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 216 in 96 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, Q8, C32, C32, C32, Dic3, C12, C12, C12, C3×C6, C3×C6, C3×C6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C32×C6, C3×Dic6, C32⋊4Q8, C3×C3⋊Dic3, C32×C12, C3×C32⋊4Q8
Quotients: C1, C2, C3, C22, S3, C6, Q8, D6, C2×C6, C3×S3, C3⋊S3, Dic6, C3×Q8, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C3×Dic6, C32⋊4Q8, C6×C3⋊S3, C3×C32⋊4Q8
(1 49 58)(2 50 59)(3 51 60)(4 52 57)(5 13 23)(6 14 24)(7 15 21)(8 16 22)(9 27 18)(10 28 19)(11 25 20)(12 26 17)(29 33 40)(30 34 37)(31 35 38)(32 36 39)(41 68 56)(42 65 53)(43 66 54)(44 67 55)(45 72 62)(46 69 63)(47 70 64)(48 71 61)
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 69 43)(10 70 44)(11 71 41)(12 72 42)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 45 53)(18 46 54)(19 47 55)(20 48 56)(25 61 68)(26 62 65)(27 63 66)(28 64 67)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)
G:=sub<Sym(72)| (1,49,58)(2,50,59)(3,51,60)(4,52,57)(5,13,23)(6,14,24)(7,15,21)(8,16,22)(9,27,18)(10,28,19)(11,25,20)(12,26,17)(29,33,40)(30,34,37)(31,35,38)(32,36,39)(41,68,56)(42,65,53)(43,66,54)(44,67,55)(45,72,62)(46,69,63)(47,70,64)(48,71,61), (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;
G:=Group( (1,49,58)(2,50,59)(3,51,60)(4,52,57)(5,13,23)(6,14,24)(7,15,21)(8,16,22)(9,27,18)(10,28,19)(11,25,20)(12,26,17)(29,33,40)(30,34,37)(31,35,38)(32,36,39)(41,68,56)(42,65,53)(43,66,54)(44,67,55)(45,72,62)(46,69,63)(47,70,64)(48,71,61), (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );
G=PermutationGroup([[(1,49,58),(2,50,59),(3,51,60),(4,52,57),(5,13,23),(6,14,24),(7,15,21),(8,16,22),(9,27,18),(10,28,19),(11,25,20),(12,26,17),(29,33,40),(30,34,37),(31,35,38),(32,36,39),(41,68,56),(42,65,53),(43,66,54),(44,67,55),(45,72,62),(46,69,63),(47,70,64),(48,71,61)], [(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,69,43),(10,70,44),(11,71,41),(12,72,42),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,45,53),(18,46,54),(19,47,55),(20,48,56),(25,61,68),(26,62,65),(27,63,66),(28,64,67)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])
C3×C32⋊4Q8 is a maximal subgroup of
C33⋊12SD16 C33⋊17SD16 C33⋊6Q16 C33⋊8Q16 C33⋊18SD16 C33⋊9Q16 C3×S3×Dic6 D12⋊(C3⋊S3) C32⋊9(S3×Q8) C12.58S32 C3⋊S3⋊4Dic6 C12⋊S3⋊12S3 C3×Q8×C3⋊S3
63 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3N | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6N | 12A | ··· | 12Z | 12AA | 12AB | 12AC | 12AD |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 18 | 18 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 18 | 18 | 18 | 18 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | Q8 | D6 | C3×S3 | Dic6 | C3×Q8 | S3×C6 | C3×Dic6 |
kernel | C3×C32⋊4Q8 | C3×C3⋊Dic3 | C32×C12 | C32⋊4Q8 | C3⋊Dic3 | C3×C12 | C3×C12 | C33 | C3×C6 | C12 | C32 | C32 | C6 | C3 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 4 | 1 | 4 | 8 | 8 | 2 | 8 | 16 |
Matrix representation of C3×C32⋊4Q8 ►in GL4(𝔽13) generated by
3 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 5 | 3 |
9 | 0 | 0 | 0 |
0 | 3 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 8 | 9 |
8 | 0 | 0 | 0 |
0 | 5 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 9 | 5 |
0 | 1 | 0 | 0 |
12 | 0 | 0 | 0 |
0 | 0 | 1 | 4 |
0 | 0 | 6 | 12 |
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,9,5,0,0,0,3],[9,0,0,0,0,3,0,0,0,0,3,8,0,0,0,9],[8,0,0,0,0,5,0,0,0,0,8,9,0,0,0,5],[0,12,0,0,1,0,0,0,0,0,1,6,0,0,4,12] >;
C3×C32⋊4Q8 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_4Q_8
% in TeX
G:=Group("C3xC3^2:4Q8");
// GroupNames label
G:=SmallGroup(216,140);
// by ID
G=gap.SmallGroup(216,140);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,1444,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations