Copied to
clipboard

G = C3×C324Q8order 216 = 23·33

Direct product of C3 and C324Q8

direct product, metabelian, supersoluble, monomial

Aliases: C3×C324Q8, C337Q8, C328Dic6, C12.7(C3×S3), C6.24(S3×C6), (C3×C12).9C6, C32(C3×Dic6), (C3×C6).57D6, C12.9(C3⋊S3), C326(C3×Q8), (C3×C12).14S3, C3⋊Dic3.4C6, (C32×C12).3C2, (C32×C6).21C22, C4.(C3×C3⋊S3), C2.3(C6×C3⋊S3), C6.22(C2×C3⋊S3), (C3×C6).29(C2×C6), (C3×C3⋊Dic3).6C2, SmallGroup(216,140)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C3×C324Q8
C1C3C32C3×C6C32×C6C3×C3⋊Dic3 — C3×C324Q8
C32C3×C6 — C3×C324Q8
C1C6C12

Generators and relations for C3×C324Q8
 G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 216 in 96 conjugacy classes, 42 normal (14 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, Q8, C32, C32, C32, Dic3, C12, C12, C12, C3×C6, C3×C6, C3×C6, Dic6, C3×Q8, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, C32×C6, C3×Dic6, C324Q8, C3×C3⋊Dic3, C32×C12, C3×C324Q8
Quotients: C1, C2, C3, C22, S3, C6, Q8, D6, C2×C6, C3×S3, C3⋊S3, Dic6, C3×Q8, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C3×Dic6, C324Q8, C6×C3⋊S3, C3×C324Q8

Smallest permutation representation of C3×C324Q8
On 72 points
Generators in S72
(1 49 58)(2 50 59)(3 51 60)(4 52 57)(5 13 23)(6 14 24)(7 15 21)(8 16 22)(9 27 18)(10 28 19)(11 25 20)(12 26 17)(29 33 40)(30 34 37)(31 35 38)(32 36 39)(41 68 56)(42 65 53)(43 66 54)(44 67 55)(45 72 62)(46 69 63)(47 70 64)(48 71 61)
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 69 43)(10 70 44)(11 71 41)(12 72 42)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 45 53)(18 46 54)(19 47 55)(20 48 56)(25 61 68)(26 62 65)(27 63 66)(28 64 67)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)

G:=sub<Sym(72)| (1,49,58)(2,50,59)(3,51,60)(4,52,57)(5,13,23)(6,14,24)(7,15,21)(8,16,22)(9,27,18)(10,28,19)(11,25,20)(12,26,17)(29,33,40)(30,34,37)(31,35,38)(32,36,39)(41,68,56)(42,65,53)(43,66,54)(44,67,55)(45,72,62)(46,69,63)(47,70,64)(48,71,61), (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;

G:=Group( (1,49,58)(2,50,59)(3,51,60)(4,52,57)(5,13,23)(6,14,24)(7,15,21)(8,16,22)(9,27,18)(10,28,19)(11,25,20)(12,26,17)(29,33,40)(30,34,37)(31,35,38)(32,36,39)(41,68,56)(42,65,53)(43,66,54)(44,67,55)(45,72,62)(46,69,63)(47,70,64)(48,71,61), (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );

G=PermutationGroup([[(1,49,58),(2,50,59),(3,51,60),(4,52,57),(5,13,23),(6,14,24),(7,15,21),(8,16,22),(9,27,18),(10,28,19),(11,25,20),(12,26,17),(29,33,40),(30,34,37),(31,35,38),(32,36,39),(41,68,56),(42,65,53),(43,66,54),(44,67,55),(45,72,62),(46,69,63),(47,70,64),(48,71,61)], [(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,69,43),(10,70,44),(11,71,41),(12,72,42),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,45,53),(18,46,54),(19,47,55),(20,48,56),(25,61,68),(26,62,65),(27,63,66),(28,64,67)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])

C3×C324Q8 is a maximal subgroup of
C3312SD16  C3317SD16  C336Q16  C338Q16  C3318SD16  C339Q16  C3×S3×Dic6  D12⋊(C3⋊S3)  C329(S3×Q8)  C12.58S32  C3⋊S34Dic6  C12⋊S312S3  C3×Q8×C3⋊S3

63 conjugacy classes

class 1  2 3A3B3C···3N4A4B4C6A6B6C···6N12A···12Z12AA12AB12AC12AD
order12333···3444666···612···1212121212
size11112···221818112···22···218181818

63 irreducible representations

dim11111122222222
type++++-+-
imageC1C2C2C3C6C6S3Q8D6C3×S3Dic6C3×Q8S3×C6C3×Dic6
kernelC3×C324Q8C3×C3⋊Dic3C32×C12C324Q8C3⋊Dic3C3×C12C3×C12C33C3×C6C12C32C32C6C3
# reps121242414882816

Matrix representation of C3×C324Q8 in GL4(𝔽13) generated by

3000
0300
0010
0001
,
1000
0100
0090
0053
,
9000
0300
0030
0089
,
8000
0500
0080
0095
,
0100
12000
0014
00612
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,9,5,0,0,0,3],[9,0,0,0,0,3,0,0,0,0,3,8,0,0,0,9],[8,0,0,0,0,5,0,0,0,0,8,9,0,0,0,5],[0,12,0,0,1,0,0,0,0,0,1,6,0,0,4,12] >;

C3×C324Q8 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_4Q_8
% in TeX

G:=Group("C3xC3^2:4Q8");
// GroupNames label

G:=SmallGroup(216,140);
// by ID

G=gap.SmallGroup(216,140);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,72,169,79,1444,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽